Resveratrol Tetramers from the Roots of Ampelopsis sinica

Na LI, Xin LIU, Mao LIN*

Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050

Abstract: A new resveratrol tetramer, sinicin A was isolated from the roots of *Ampelopsis sinica*, with four known tetramers: vitisin A, *cis*-vitisin B, ampelopsin H and hopeaphenol. The structure and stereochemistry of sinicin A have been established on the basis of 1D and 2D NMR spectroscopic techniques.

Keywords: Ampelopsis sinica, Vitaceae, resveratrol tetramer.

Various biological activities of stilbenoids have been described, such as antifungal and antibacterial activities¹, antihepatotoxic activity²⁻⁴, anti-HIV activity⁵. Stilbenoids mainly existed in Vitaceae, Diperocarpaceae, Gnetaceae, Cyperaceae, Leguminase¹. Many oligostilbenes have been isolated from Vitaceaeous plants. But, there was no report on the stilbenoids in *Ampelopsis sinica* (Miq.) W. T. Wang which was traditionarily used to treat arthritis⁶. In our study on the constituents of the roots of *A. sinica*, a new and four known resveratrol tetramers were isolated. In this paper, we report the isolation and structure determination of the new tetramer—sinicin A.

1

* E-mail: linmao@imm.ac.cn

Na LI et al.

Roots of *A. sinica* were extracted with 95% EtOH. The alcohol extract was extracted in Soxhlet apparatus with CHCl₃, EtOAc, acetone and methanol, respectively. The EtOAc fraction was subjected to silica gel column chromatography eluted with cyclohexane-acetone and CHCl₃-CH₃OH, MPLC with CH₃OH-H₂O to provide five compounds.

Compound 1, obtained as a brown amorphous powder, exhibited strong blue violet fluorescence under UV light at 254 nm. The compound 1 gave an $[M+H]^+$ ion peak at m/z 907 in FABMS corresponding to the molecular formula $C_{56}H_{42}O_{12}$, which suggested that 1 was a resveratrol tetramer. Its ¹H NMR spectrum showed the presence of four sets of *ortho*-coupled aromatic protons assignable to four 4-hydroxyphenol groups [\delta 7.60 (d, 2H, J = 8.4 Hz, H-2a, 6a) and 6.92 (d, 2H, J=8.4 Hz, H-3a, 5a); δ 6.92 (d, 2H, J=8.4 Hz, H-2b, 6b) and 6.53 (*br. d*, 2H, J=8.4 Hz, H-3b, 5b); δ 6.15 (*d*, 2H, J=8.7 Hz, H-2c, 6c) and 6.21 (d, 2H, J=8.7 Hz, H-3c, 5c); δ 7.36 (d, 2H, J=8.4 Hz, H-2d, 6d) and 7.03 (d, 2H, J = 8.4 Hz, H-3d, 5d)]. The ¹H NMR spectrum also displayed the presence of a 3, 5-dihydroxyphenol group [d 5.93 (d, 2H, J=2.1 Hz, H-10d, 14d) and 6.05 (t, 1H, J=2.1 Hz, H-12d)], two sets of meta-coupled aromatic protons on a 1, 2, 3, 5-tetra-substituted benzene ring [δ 6.04 (*d*, 1H, J=2.4 Hz, H-12a) and 6.29 (*d*, 1H, J=2.4 Hz, H-14a); δ 6.29 (d, 1H, J=2.4 Hz, H-12c) and 6.00 (d, 1H, J=2.4 Hz, H-14c)], and isolated aromatic proton on a penta-substituted benzene ring [δ 6.22 (s, 1H, H-12b)], two sets of mutually coupled aliphatic protons assignable to the dihydrofuran rings [δ 5.94 (d, 1H, J=10.5 Hz, H-7a) and 5.20 (d, 1H, J=10.5 Hz, H-8a); & 5.32 (d, 1H, J=3.0 Hz, H-7d) and 4.50 (d, 1H, J=3.0 Hz, H8d)] and a sequence of four aliphatic methine protons successively in the ¹H-¹H COSY spectrum [δ 4.32 (*d*, 1H, J=12.0 Hz, H-7b), 4.00 (m, 1H, H-8b), 3.78 (d, 1H, J=6.0 Hz, H-7c) and 4.00 (s, 1H, H-8c)]. The 13 C NMR spectrum exhibited twenty-four quaternary carbons and thirty-two methine carbons which could be assignable by the HMQC spectrum (Table 1). The planar structure could be determined by the long-range correlations in the HMBC spectrum (Figure 1 and Table 1). To clarify the relative stereochemistry of 1, NOESY spectrum has been carried out. In the NOESY spectrum (Figure 1 and Table 1), the NOEs between H-7a/H-14a, H-8a/H-2(6)a; H-8c/H-2(6)c; H-7d/H-10(14)d, H-8d/H-2 (6)d revealed a trans orientation of ring A_1 and A_2 , C_1 and C_2 , D_1 and D_2 , respectively. The NOEs between H-8a/H-7b, H-7b/H-8c suggested a cis orientation of H-8a, H-7b and H-8c. The NOEs between H-8b/H-7c, H-7c/H-8d suggested a cis orientation of H-8b, H-7c and H-8d. Thus, the stereochemistry of 1 was determined (shown in Figure 1) and the relative configuration is (7aR, 8aR, 7bS, 8bR, 7cR, 8cR, 7dR, 8dR).

In addition to **1**, four known reserveratrol tetermers were isolated and their structrues were identified as vitisin A, *cis*-vitisin B, ampelopsin H and hopeaphenol, respectively, by the spectral analysis and comparison with respective authentic samples.

894

	$\delta_{\rm H}$ ppm (J Hz)	$\delta_{\rm C}$	HMBC	NOESY
1a		130.6		
2,6a	7.600 d (8.4)	130.3	C-2, 6a, C-4a, C-7a	H-7a, H-8a, H-14a
3,5a	6.920 d (8.4)	116.1	C-1a, C-3, 5a, C-4a	
4a		158.6		
7a	5.941 d (10.5)	90.2	C-2, 6a, C-9a	H-2, 6a, H-14a
8a	5.197 d (10.5)	48.5	C-1a, C-9a, C-10b	H-2, 6a, H-7b
9a		142.1		
10a		121.9		
11a		158.1		
12a	6.035 d (2.4)	103.5	C-10a, C-13a, C-14a	
13a		157.2		
14a	6.289 d (2.4)	105.0	C-8a, C-10a, C-12a, C-13a	H-2, 6a, H-7a
1b		132.7		
2,6b	6.920 d (8.4)	132.1		H-7c, H-7b, H-8b
3,5b	6.533 br.d (8.4)	115.0	C-1b, C-3, 5b	
4b		156.3		
7b	4.323 d (12.0)	45.4	C-9a, C-10a, C-11a, C-2, 6b, C-8b, C-9b	H-2, 6b, H-2, 6c, H-8a, H-8c
8b	3.998 m	47.2	C-10a, C-1c, C-9b, C-14b	H-2, 6b, H-8d, H-7c
9b		147.0		· · · · · · · · · · · · · · · · · · ·
10b		117.8		
11b		159.8		
12b	6.221 s	95.9	C-10b, C-11b, C-14b	
13b		155.4		
14b		122.0		
1c		134.0		
2,6c	6.147 d (8.7)	128.9	C-2, 6c, C-4c, C-7c	H-7c, H-8c, H-7b
3,5c	6.214 d (8.7)	114.9	C-1c, C-3, 5c, C-4c	
4c	· · · ·	155.8		
7c	3.777 d (6.0)	61.4	C-8b, C-9b, C-14b, C-1c,	H-2, 6b, H-2, 6c, H-8d, H-8b
			C-2, 6c, C-8c, C-9c	
8c	3.998 s	52.9	C-8b, C-9b, C-13b, C-14b,	H-2, 6c, H-14c, H-7b,
			C-1c, C-7c, C-9c, C-10c, C-14c	H-10, 14d
9c		143.0		
10c		119.1		
11c		162.7		
12c	6.289 d (2.4)	95.9	C-10c, C-11c, C-13c, C-14c	
13c		159.4		
14c	6.004 d (2.4)	107.1	C-8c, C-10c, C-12c	H-8c
1d		134.8		
2,6d	7.356 d (8.4)	127.7	C-2, 6d, C-4d, C-7d	H-7d, H-8d
3,5d	7.029 d (8.4)	116.3	C-1d, C-3, 5d, C-4d	
4d		158.3		
7d	5.323 d (3.0)	93.9	C-11c, C-2,6d, C-9d	H-2, 6d, H-10, 14d
8d	4.504 d (3.0)	56.8	C-10c, C-11c, C-1d, C-9d,	H-2,6d, H-10,14d, H-8b, H-7c
9d		146 /	C-10, 14d	
10 144	5 926 d (2 1)	106.5	C-8d C-10 14d C 11 12d	Н.74 Ц 84 Ц 94
10,140	J.920 u (2.1)	100.5	C-ou, C-10, 140, C-11,130, C-12d	n-/u, n-ðu, n-ðc
11,13d		159.4		
12d	6.054 t (2.1)	101.9	C-10, 14d, C-11,13d	

Table 1. ¹H and ¹³C NMR spectral data for **1** (in acetone- d_6)

Na LI et al.

Figure 2 Significant NOE and ¹³C-¹H long-range correlations observed in the NOESY and HMBC spectra of 1

Acknowledgments

This research program was supported by the National Natural Science Foundation of China (No. 30,070,889). The authors thank the Department of Instrumental Analysis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union College, for the measurement of UV, IR, NMR and MS spectra.

References

- S. Sotheeswaran & V. Pasupathy, Phytochemistry, 1993, 32 (5), 1083. 1.
- 2. Y. Kimura, H. Ohminami, H. Okuda, K. Baba, M. Kozawa & S. Arichi, Planta Medica, 1983, 49, 51.
- 3.
- L. Yang, K. Yen, Y. Kiso & H. Hikino, J. Ethnopharmacology, 1987, 19, 103. Y. Oshima, K. Namao, A. Kamijou, S. Matsuoka, M. Nakano, K. Terao & Y. Ohizumi, 4. Experienta, 1995, 51, 63.
- 5. J. R. Dai, Y. F. Hallock, J. H. Cardellina II & M. R. Boyd, J. Nat. Prod., 1998, 61, 351.
- 6. Guizhou Institute of Traditional Chinese Medicine, Dictionary of Traditional Herb Medicine of Guizhou, 1988, p.331.

Received 1 March, 2001